
Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 1 © Andrew Davison 2017

Part 3: Draw & Impress Modules

Chapter 16. Making Slides

The MakeSlides.java example creates a deck of five slides,

illustrating different aspects of slide generation:

 Slide 1. A slide combining a title and subtitle (see

Figure 3);

 Slide 2. A slide with a title, bullet points, and an image

(see Figure 4);

 Slide 3. A slide with a title, and an embedded video

which plays automatically when that slide appears during a slide show (see Figure

6);

 Slide 4. A slide with an ellipse and a rounded rectangle acting as buttons. During a

slide show, clicking on the ellipse starts a video playing in an external viewer.

Clicking on the rounded rectangle causes the slide show to jump to the first slide

in the deck (see Figure 7);

 Slide 5. This slide contains eight shapes generated using dispatches, including

special symbols, block arrows, 3D shapes, flowchart elements, callouts, and stars

(see Figure 9).

MakeSlides.java creates a slide deck, adds the five slides to it, and finishes by saving

the presentation in "makeslides.odp":

public static void main (String args[])

{

 XComponentLoader loader = Lo.loadOffice();

 XComponent doc = Draw.createImpressDoc(loader); // Impress doc

 if (doc == null) {

 System.out.println("Impress doc creation failed");

 Lo.closeOffice();

 return;

 }

 // first slide: title + subtitle

 XDrawPage currSlide = Draw.getSlide(doc, 0);

 Draw.showShapesInfo(currSlide);

 Draw.titleSlide(currSlide, "Java-Generated Slides",

 "Using LibreOffice");

 Draw.showShapesInfo(currSlide);

 // second slide (bullets and image)

 currSlide = Draw.addSlide(doc);

 doBullets(currSlide);

 // third slide: title and video

 currSlide = Draw.addSlide(doc);

 Draw.titleOnlySlide(currSlide, "Clock Video");

 Draw.drawMedia(currSlide, "clock.avi", 20, 70, 50, 50);

 // fourth slide: buttons

Topics: Creating Slides:

title, subtitle, bullets,

images, video, buttons;

Shape Animations;

Dispatch Shapes (special

symbols, block arrows,

3D shapes, flowchart

elements, callouts, and

stars); Slide Viewing

Example folders: "Draw

Tests" and "Utils"

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 2 © Andrew Davison 2017

 currSlide = Draw.addSlide(doc);

 buttonShapes(currSlide);

 // fifth slide: shapes created with dispatches

 dispatchShapes(doc);

 System.out.println("Total no. of slides: " +

 Draw.getSlidesCount(doc));

 Lo.saveDoc(doc, "makeslides.odp");

 Lo.closeDoc(doc);

 Lo.closeOffice();

} // end of main()

The five slides are explained in the following sections.

1. The First Slide (Title and Subtitle)

Draw.createImpressDoc() calls Lo.createDoc(), supplying it with the Impress

document string type:

// in the Draw class

public static XComponent createImpressDoc(XComponentLoader loader)

{ return Lo.createDoc("simpress", loader); }

This creates a new slide deck with one slide whose layout depends on Impress' default

settings. Figure 1 shows the usual layout when a user starts Impress.

Figure 1. The Default New Slide in Impress.

The slide contains two empty presentation shapes – the text rectangle at the top is a

TitleTextShape, and the larger rectangle below is a SubTitleShape.

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 3 © Andrew Davison 2017

This first slide, which is at index position 0 in the deck, can be referred to by calling

Draw.getSlide():

XDrawPage currSlide = Draw.getSlide(doc, 0);

This is the same method used to get the first page in a Draw document, so I won't go

through it again. The XDrawPage object can be examined by calling

Draw.showShapesInfo() which lists all the shapes (both draw and presentation ones)

on the slide:

// in Draw

public static void showShapesInfo(XDrawPage dp)

{

 System.out.println("Draw Page shapes:");

 ArrayList<XShape> shapes = getShapes(dp);

 if (shapes != null) {

 for(XShape shape : shapes)

 showShapeInfo(shape);

 }

} // end of showShapesInfo()

public static void showShapeInfo(XShape xShape)

{ System.out.println(" Shape service: " + xShape.getShapeType() +

 "; z-order: " + getZOrder(xShape));

} // end of showShapeInfo()

public static int getZOrder(XShape shape)

{ return (Integer) Props.getProperty(shape, "ZOrder"); }

Draw.showShapesInfo() output for the first slide is:

Draw Page shapes:

 Shape service: com.sun.star.presentation.TitleTextShape; z-order: 0

 Shape service: com.sun.star.presentation.SubtitleShape; z-order: 1

Obviously, the default layout sometimes isn't the one we want. One solution would be

to delete the unnecessary shapes on the slide, then add the shapes that we do want. A

better approach is the programming equivalent of selecting a different slide layout.

This is implemented as several Draw methods, called titleSlide(), bulletsSlide(),

titleOnlySlide(), and blankSlide(), which change the slide's layout to those shown in

Figure 2.

Figure 2. Slide Layout Methods.

A title/subtitle layout is used for the first slide by calling:

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 4 © Andrew Davison 2017

Draw.titleSlide(currSlide, "Java-Generated Slides",

 "Using LibreOffice");

It generates the slide shown in Figure 3.

Figure 3. The Title and Subtitle Slide.

Having a Draw.titleSlide() method may seem a bit silly since we've seen that the first

slide already uses this layout (e.g. in Figure 1). That's true for my Impress setup, but

may not be the case for other installations with different configurations.

The other layouts shown on the right of Figure 1 could also be implemented as Draw

methods, but the four in Figure 2 seem most useful. They set the "Layout" property in

the DrawPage service in the com.sun.star.presentation module (not the one in the

drawing module).

The documentation for DrawPage (use lodoc DrawPage presentation service)

only says that "Layout" stores a short; it doesn't list the possible values or how they

correspond to layouts. However, there is a list at the excellent Japanese Office

website, http://openoffice3.web.fc2.com/OOoBasic_Impress.html#OOoIPLy01a,

which I used as the basis of the layout constants in my Draw class:

// in Draw

public static final int LAYOUT_TITLE_SUB = 0;

 // title, and subtitle below (the default, usually)

public static final int LAYOUT_TITLE_BULLETS = 1;

 // the usual one you want

public static final int LAYOUT_TITLE_CHART = 2;

public static final int LAYOUT_TITLE_2CONTENT = 3;

 // 2 boxes: 1x2 (row x column), 1 row

public static final int LAYOUT_TITLE_CONTENT_CHART = 4;

public static final int LAYOUT_TITLE_CONTENT_CLIP = 6;

public static final int LAYOUT_TITLE_CHART_CONTENT = 7;

public static final int LAYOUT_TITLE_TABLE = 8;

public static final int LAYOUT_TITLE_CLIP_CONTENT = 9;

public static final int LAYOUT_TITLE_CONTENT_OBJECT = 10;

public static final int LAYOUT_TITLE_OBJECT = 11;

public static final int LAYOUT_TITLE_CONTENT_2CONTENT = 12;

 // 3 boxes in 2 columns: 1 in first col, 2 in second

public static final int LAYOUT_TITLE_OBJECT_CONTENT = 13;

public static final int LAYOUT_TITLE_CONTENT_OVER_CONTENT = 14;

 // 2 boxes: 2x1, 1 column

public static final int LAYOUT_TITLE_2CONTENT_CONTENT = 15;

 // 3 boxes in 2 columns: 2 in first col, 1 in second

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 5 © Andrew Davison 2017

public static final int LAYOUT_TITLE_2CONTENT_OVER_CONTENT = 16;

 // 3 boxes on 2 rows: 2 on first row, 1 on second

public static final int LAYOUT_TITLE_CONTENT_OVER_OBJECT = 17;

public static final int LAYOUT_TITLE_4OBJECT = 18; // 4 boxes: 2x2

public static final int LAYOUT_TITLE_ONLY = 19;

 // title only; no body shape

public static final int LAYOUT_BLANK = 20;

public static final int LAYOUT_VTITLE_VTEXT_CHART = 27;

 // vertical title, vertical text, and chart

public static final int LAYOUT_VTITLE_VTEXT = 28;

public static final int LAYOUT_TITLE_VTEXT = 29;

public static final int LAYOUT_TITLE_VTEXT_CLIP = 30;

public static final int LAYOUT_CENTERED_TEXT = 32;

public static final int LAYOUT_TITLE_4CONTENT = 33; // 4 boxes: 2x2

public static final int LAYOUT_TITLE_6CONTENT = 34; // 6 boxes: 2x3

The four constants highlighted above are used by the Draw methods described next.

Draw.titleSlide() starts by setting the slide's "Layout" property to

LAYOUT_TITLE_SUB:

// in Draw

public static void titleSlide(XDrawPage currSlide,

 String title, String subTitle)

{

 Props.setProperty(currSlide, "Layout", LAYOUT_TITLE_SUB);

 // title and subtitle

 // add the title text to the title shape

 XShape xs = Draw.findShapeByType(currSlide, Draw.TITLE_TEXT);

 XText textField = Lo.qi(XText.class, xs);

 textField.setString(title);

 // add the subtitle text to the subtitle shape

 xs = Draw.findShapeByType(currSlide, Draw.SUBTITLE_TEXT);

 textField = Lo.qi(XText.class, xs);

 textField.setString(subTitle);

} // end of titleSlide()

This changes the slide's layout to an empty TitleTextShape and SubtitleShape. The

functions adds title and subtitle strings to these shapes, and returns. The tricky part is

obtaining a reference to a particular shape so it can be modified.

One (bad) solution is to use the index ordering of the shapes on the slide, which is

displayed by Draw.showShapesInfo(). It turns out that TitleTextShape is first (i.e. at

index 0), and SubtitleShape second. This can be used to write the following code:

XShapes xShapes = Lo.qi(XShapes.class, currSlide);

XShape titleShape = Lo.qi(XShape.class, xShapes.getByIndex(0));

XShape subTitleShape = Lo.qi(XShape.class, xShapes.getByIndex(1));

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 6 © Andrew Davison 2017

This is a bit hacky, so I coded Draw.findShapeByType() instead, which searches for a

shape based on its type:

// in Draw

public static XShape findShapeByType(XDrawPage slide,

 String shapeType)

{ ArrayList<XShape> shapes = getShapes(slide);

 if (shapes == null) {

 System.out.println("No shapes were found in the draw page");

 return null;

 }

 for (XShape shape : shapes) {

 if (shapeType.equals(shape.getShapeType()))

 return shape;

 }

 System.out.println("No shape found of type \"" +

 shapeType + "\"");

 return null;

} // end of findShapeByType()

I added constants to the Draw class so the programmer wouldn't have to remember

long shape type names:

// in Draw

public static final String TITLE_TEXT =

 "com.sun.star.presentation.TitleTextShape";

public static final String SUBTITLE_TEXT =

 "com.sun.star.presentation.SubtitleShape";

public static final String BULLETS_TEXT =

 "com.sun.star.presentation.OutlinerShape";

This allows me to find the title shape by calling:

XShape xs = Draw.findShapeByType(currSlide, Draw.TITLE_TEXT);

2. The Second Slide (Title, Bullets, and Image)

The second slide uses a title and bullet points layout, with an image added at the

bottom right corner. The relevant lines in MakeSlides.java are:

// in main() in MakeSlides.java...

currSlide = Draw.addSlide(doc);

doBullets(currSlide);

The result is shown in Figure 4.

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 7 © Andrew Davison 2017

Figure 4. A Slide with a Title, Bullet Points, and an Image.

The slide is created by doBullets() in MakeSlides.java:

// in MakeSlides.java

private static void doBullets(XDrawPage currSlide)

{

 XText body = Draw.bulletsSlide(currSlide,

 "What is an Algorithm?");

 // bullet levels are 0, 1, 2,...

 Draw.addBullet(body, 0, "An algorithm is a finite

 set of unambiguous instructions

 for solving a problem.");

 Draw.addBullet(body, 1, "An algorithm is correct if on

 all legitimate inputs, it outputs

 the right answer in a finite amount

 of time");

 Draw.addBullet(body, 0, "Can be expressed as");

 Draw.addBullet(body, 1, "pseudocode");

 Draw.addBullet(body, 1, "flow charts");

 Draw.addBullet(body, 1, "text in a natural language

 (e.g. English)");

 Draw.addBullet(body, 1, "computer code");

 // add the image

 XShape im = Draw.drawImageOffset(currSlide, "skinner.png",

 0.6, 0.5);

 // in bottom right corner, and scaled if necessary

 Draw.moveToBottom(currSlide, im); //move pic below slide text

} // end of doBullets()

Draw.bulletsSlide() works in a similar way to Draw.titleSlide() – first the slide's

layout is set, then the presentation shapes are found and modified:

// in Draw

public static XText bulletsSlide(XDrawPage currSlide, String title)

{

 Props.setProperty(currSlide, "Layout", LAYOUT_TITLE_BULLETS);

 // add the title text to the title shape

 XShape xs = Draw.findShapeByType(currSlide, Draw.TITLE_TEXT);

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 8 © Andrew Davison 2017

 XText textField = Lo.qi(XText.class, xs);

 textField.setString(title);

 // return a reference to the bullet text area

 xs = Draw.findShapeByType(currSlide, Draw.BULLETS_TEXT);

 return Lo.qi(XText.class, xs);

} // end of bulletsSlide()

The Draw.LAYOUT_TITLE_BULLETS constant changes the slide's layout to contain

two presentation shapes – a TitleTextShape at the top, and an OutlinerShape beneath

it (as in the second picture in Figure 2). Draw.bulletsSlide() calls

Draw.findShapeByType() twice to find these shapes, but it does nothing to the

OutlinerShape itself, returning it as an XText reference. This allows text to be inserted

into the shape by other code (i.e. by Draw.addBullet()).

2.1. Adding Bullets to a Text Area

Draw.addBullet() converts the shape's XText reference into an XTextRange, which

offers a setString() method:

 public static void addBullet(XText bullsText, int level,

 String text)

 { // access the end of the bullets text

 XTextRange tr = Lo.qi(XTextRange.class,bullsText).getEnd();

 // set the bullet's level

 Props.setProperty(tr, "NumberingLevel",(short)level);

 tr.setString(text + "\n"); // add the text

 } // end of addBullet()

As explained in Chapter 5, XTextRange is part of the TextRange service which

inherits both paragraph and character property classes, as indicated by Figure 5.

Figure 5. The TextRange Service.

A look through the ParagraphProperties documentation reveals a "NumberingLevel"

property which affects the displayed bullet level (use lodoc ParagraphProperties).

Another way of finding out about the properties associated with XTextRange is to use

my Props.showObjProps() to list all of them:

Props.showObjProps("TextRange in OutlinerShape", tr);

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 9 © Andrew Davison 2017

The bullet text is added with XTextRange.setString(). A newline is added to the text

before the set, to ensure that the string is treated as a complete paragraph. The

drawback is that the newline causes an extra bullet symbol to be drawn after the real

bullet points. This can be seen in Figure 4, at the bottom of the slide. (Principal

Skinner is pointing at it.)

2.2. Offsetting an Image

The AnimBicycle.java example in Chapter 14 employed a version of

Draw.drawImage() based around specifying an (x, y) position on the page and a width

and height for the image frame. Draw.drawImageOffset() used here is a variant which

specifies its position in terms of fractional offsets from the top-left corner of the slide.

For example:

XShape im = Draw.drawImageOffset(currSlide, "skinner.png", 0.6, 0.5);

The last two arguments mean that the image's top-left corner will be placed at a point

that is 0.6 of the slide's width across and 0.5 of its height down. drawImageOffset()

also scales the image so that it doesn't extend beyond the right and bottom edges of

the slide. The scaling is the same along both dimensions so the picture isn't distorted.

The code for Draw.drawImageOffset():

// in Draw

public static XShape drawImageOffset(XDrawPage slide,

 String imFnm, double xOffset, double yOffset)

{

 if ((xOffset < 0) || (xOffset >= 1)) {

 System.out.println("xOffset should be between 0-1; using 0.5");

 xOffset = 0.5;

 }

 if ((yOffset < 0) || (yOffset >= 1)) {

 System.out.println("yOffset should be between 0-1; using 0.5");

 yOffset = 0.5;

 }

 Size slideSize = Draw.getSlideSize(slide); // in mm units

 if (slideSize == null) {

 System.out.println("Image drawing cannot proceed");

 return null;

 }

 int x = (int)Math.round(slideSize.Width * xOffset); //in mm units

 int y = (int)Math.round(slideSize.Height * yOffset);

 int maxWidth = slideSize.Width - x;

 int maxHeight = slideSize.Height - y;

 Size imSize = Images.calcScale(imFnm, maxWidth, maxHeight);

 return drawImage(slide, imFnm, x, y,

 imSize.Width, imSize.Height);

} // end of drawImageOffset()

drawImageOffset() uses the slide's size to determine an (x, y) position for the image,

and its width and height. Images.calcScale() calculates the best width and height for

the image frame such that the image will be drawn entirely on the slide:

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 10 © Andrew Davison 2017

// in the Images class

public static Size calcScale(String fnm, int maxWidth,

 int maxHeight)

{ Size imSize = Images.getSize100mm(fnm); // in 1/100 mm units

 if (imSize == null)

 return null;

 // calculate the scale factors to obtain these maximums

 double widthScale = ((double)maxWidth*100)/imSize.Width;

 double heightScale = ((double)maxHeight*100)/imSize.Height;

 // use the smallest scale factor

 double scaleFactor = (widthScale < heightScale) ?

 widthScale : heightScale;

 // calculate new dimensions for the image

 int w = (int)Math.round(imSize.Width * scaleFactor/100);

 int h = (int)Math.round(imSize.Height * scaleFactor/100);

 return new Size(w, h);

} // end of calcScale()

calcScale() uses Images.getSize100mm() to retrieve the size of the image in 1/100

mm units, and then a scale factor is calculated for both the width and height. This is

used to set the image frame's dimensions when the graphic is loaded by drawImage().

3. The Third Slide (Title and Video)

The third slide consists of a title shape and a video frame, which looks like Figure 6.

Figure 6. A Slide Containing a Video Frame.

When this slide appears in a slide show, the video will automatically start playing.

The code for generating this slide is:

// main() of MakeSlides.java...

currSlide = Draw.addSlide(doc);

Draw.titleOnlySlide(currSlide, "Clock Video");

Draw.drawMedia(currSlide, "clock.avi", 20, 70, 50, 50);

Draw.titleOnlySlide() works in a similar way to titleSlide() and bulletsSlide():

// in Draw

public static void titleOnlySlide(XDrawPage currSlide, String header)

{

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 11 © Andrew Davison 2017

 Props.setProperty(currSlide, "Layout", LAYOUT_TITLE_ONLY);

 // title only; no body shape

 // add the text to the title shape

 XShape xs = Draw.findShapeByType(currSlide, Draw.TITLE_TEXT);

 XText textField = Lo.qi(XText.class, xs);

 textField.setString(header);

} // end of titleOnlySlide()

The MediaShape service doesn't appear in the Office documentation. Perhaps one

reason for its absence is that the shape behaves a little 'erratically'. In particular,

although MakeSlides.java successfully builds a slide deck containing the video,

Office crashes upon exiting. Also, when the deck is run as a slide show, the video

frame is sometimes incorrectly placed, although the video plays correctly.

Draw.drawMedia() is defined as:

// in Draw

public static XShape drawMedia(XDrawPage slide, String fnm,

 int x, int y, int width, int height)

// causes Office to crash on exiting

{

 XShape shape = addShape(slide, "MediaShape",

 x, y, width, height);

 // Props.showObjProps("Shape", shape);

 System.out.println("Loading media: \"" + fnm + "\"");

 Props.setProperty(shape, "MediaURL", FileIO.fnmToURL(fnm));

 Props.setProperty(shape, "Loop", true);

 return shape;

} // end of drawMedia()

In the absence of documentation, I used Props.showObjProps() to list the properties

for the MediaShape:

Props.showObjProps("Shape", shape);

The "MediaURL" property requires a file in URL format, and "Loop" is a boolean for

making the animation play repeatedly.

Office supports the AVI and WMV video formats, but not MP4.

4. The Fourth Slide (Title and Buttons)

The fourth slide has two 'buttons' – an ellipse which starts a video playing in an

external application, and a rounded rectangle which makes the presentation jump to

the first slide. These actions are both implemented using the "OnClick" property for

presentation shapes. Figure 7 shows how the slide looks.

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 12 © Andrew Davison 2017

Figure 7. A Slide with Two 'Buttons'.

The relevant code in main() of MakeSlides.java is:

currSlide = Draw.addSlide(doc);

buttonShapes(currSlide);

This button approach to playing a video doesn't suffer from the strange behavior when

using MediaShape on the third slide.

The buttonShapes() method in MakeSlides.java creates the slide:

// in MakeSlides.java

private static void buttonShapes(XDrawPage currSlide)

{

 Draw.titleOnlySlide(currSlide, "Wildlife Video Via Button");

 // button in the center of the slide

 com.sun.star.awt.Size sz = Draw.getSlideSize(currSlide);

 int width = 80;

 int height = 40;

 XShape ellipse = Draw.drawEllipse(currSlide, (sz.Width-width)/2,

 (sz.Height-height)/2, width, height);

 Draw.addText(ellipse, "Start Video", 30);

 Props.setProperty(ellipse, "OnClick", ClickAction.DOCUMENT);

 Props.setProperty(ellipse, "Bookmark",

 FileIO.fnmToURL("wildlife.wmv"));

 // draw a rounded rectangle with text

 XShape button = Draw.drawRectangle(currSlide,

 sz.Width-width-5, sz.Height-height-5, width, height);

 Draw.addText(button, "Click to go\nto Slide 1");

 Draw.setGradientColor(button, "Radial red/yellow");

 Props.setProperty(button, "CornerRadius", 300); // 1/100 mm units

 Props.setProperty(button, "OnClick", ClickAction.FIRSTPAGE);

 // clicking makes the presentation jump to first slide

} // end of buttonShapes()

A minor point of interest is that a rounded rectangle is a RectangleShape, but with its

"CornerRadius" property set.

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 13 © Andrew Davison 2017

The more important part of the method is the two uses of the "OnClick" property from

the presentation Shape class.

Clicking on the ellipse executes the video file "wildlife.wmv". This requires

"OnClick" to be assigned the ClickAction.DOCUMENT constant, and "Bookmark" to

refer to the file as an URL.

Clicking on the rounded rectangle causes the slide show to jump back to the first

page. This needs "OnClick" to be set to ClickAction.FIRSTPAGE.

Several other forms of click action are listed in Table 1.

ClickAction Name Effect

NONE No action is performed on the click. Animation and

fade effects are also switched off.

PREVPAGE The presentation jumps to the previous page.

NEXTPAGE The presentation jumps to the next page.

FIRSTPAGE The presentation continues with the first page.

LASTPAGE The presentation continues with the last page.

BOOKMARK The presentation jumps to a bookmark.

DOCUMENT The presentation jumps to another document.

INVISIBLE The object renders itself invisible after a click.

SOUND A sound is played after a click.

VERB An OLE verb is performed on this object.

VANISH The object vanishes with its effect.

PROGRAM Another program is executed after a click.

MACRO An Office macro is executed after the click.

STOPPRESENTATION The presentation is stopped after the click.

Table 1. ClickAction Effects.

Table 1 shows that it's possible to jump to various places in a slide show, and also

execute macros and external programs. In both cases, the "Bookmark" property is

used to specify the URL of the macro or program. For example, the following will

invoke Windows' calculator when the button is pressed:

Props.setProperty(button, "OnClick", ClickAction.PROGRAM);

Props.setProperty(button, "Bookmark",

 FileIO.fnmToURL(System.getenv("SystemRoot") +

 "\\System32\\calc.exe"));

"Bookmark" requires an absolute path to the application, converted to URL form.

The ClickAction documentation can be reached using lodoc ClickAction, which

loads the IDL webpage for the enumeration. Clicking on the "ClickAction" enum

name takes you to a table very like the one in Table 1.

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 14 © Andrew Davison 2017

5. Shape Animation

Shape animations are performed during a slide show, and are regulated through three

presentation Shape properties: "Effect", "Speed" and "TextEffect".

"Effect" can be assigned a large range of animation effects, which are defined as

constants in the AnimationEffect enumeration. Use lodoc AnimationEffect to

reach the presentation Shape service, then browse for its "Effect" property.

Alternatively, you can find details in the com.sun.star.presentation module (use lodoc

presentation module). Another nice summary, in the form of a large table, is in the

Developer's Guide at

https://wiki.openoffice.org/wiki/Documentation/DevGuide/Drawings/Animations_and

_Interactions (use loGuide "Animations and Interactions"). Figure 8 shows

part of that table.

Figure 8. Part of the AnimationEffect Constants Table

in the Developer's Guide.

There are two broad groups of effects: those that move a shape onto the slide when the

page appears, and fade effects that make a shape gradually appear in a given spot.

The following code fragment makes the ellipse on the fourth slide fade into view,

starting with the bottom of the shape:

// in buttonShapes() in MakeSlides.java

Props.setProperty(ellipse, "Effect",

 AnimationEffect.FADE_FROM_BOTTOM);

Props.setProperty(ellipse, "Speed", AnimationSpeed.SLOW);

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 15 © Andrew Davison 2017

The animation speed can be set to AnimationSpeed.SLOW,

AnimationSpeed.MEDIUM, or AnimationSpeed.FAST.

Unfortunately, there seems to be a problem saving these effects in the presentation file

("makeSlides.odp") created by MakeSlides.java. When that file is opened as a slide

show, no animation effects occur – the ellipse is simply displayed.

It seems that the shape animation properties are not saved to the ODP file, because

when the ellipse is examined inside Impress, its "Custom Animation" task pane is

empty.

More Complex Shape Animations

If you browse chapter 9 of the Impress user's guide on slide shows, its animation

capabilities extend well beyond the constants in AnimationEffect. These features are

available through the XAnimationNode interface, which is obtained like so:

XAnimationNodeSupplier nodeSupp =

 Lo.qi(XAnimationNodeSupplier.class, slide);

XAnimationNode slideNode = nodeSupp.getAnimationNode();

XAnimationNode allows a programmer much finer control over animation timings

and animation paths for shapes. XAnimationNode is part of the large

com.sun.star.animations package (see lodoc animations module). I won't be use

XAnimationNode here.

6. The Fifth Slide (Various Dispatch Shapes)

The fifth slide is a hacky, slow solution for generating the numerous shapes in

Impress' GUI which have no corresponding classes in the API. The approach uses

dispatch commands, JNA, and Java's Robot class (first described back in Chapter 4).

The resulting slide is shown in Figure 9.

Figure 9. Shapes Created by Dispatch Commands.

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 16 © Andrew Davison 2017

The shapes in Figure 9 are just a few of the many available via Impress' "Drawing

Toolbar", shown in Figure 10. The relevant menus are labeled and their sub-menus

are shown beneath the toolbar.

Figure 10. The Shapes Available from the Drawing Toolbar.

Each sub-menu shape has a name which appears in a tooltip when the cursor is placed

over the shape's icon. This text turns out to be very useful when writing the dispatch

commands.

There's also a "3D-Objects" toolbar which offers the shapes in Figure 11.

Figure 11. The 3D-Objects Toolbar.

Some of these 3D shapes are available in the API as undocumented Shape subclasses,

but I was unable to programmatically resize the shapes to make them visible. The

only way I could get them to appear at a reasonable size was by creating them with

dispatch commands.

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 17 © Andrew Davison 2017

Although there's no mention of these custom and 3D shapes in the Developer's Guide,

their dispatch commands do appear in the UICommands.ods spreadsheet (available

from https://arielch.fedorapeople.org/devel/ooo/UICommands.ods). They're also

mentioned, in less detail, in the online documentation for Impress dispatches at

https://wiki.documentfoundation.org/Development/DispatchCommands#Impress_slot

s_.28sdslots.29.

It's quite easy to match up the tooltip names in the GUI with the dispatch names. For

example, the smiley face in the Symbol shapes menu is called "Smiley Face" in the

GUI and ".uno:SymbolShapes.smiley" in the UICommands spreadsheet.

MakeSlides.java generates the eight shapes in Figure 9 by calling dispatchShapes():

// in MakeSlides.java

private static void dispatchShapes(XComponent doc)

{

 XDrawPage currSlide = Draw.addSlide(doc);

 Draw.titleOnlySlide(currSlide, "Dispatched Shapes");

 GUI.setVisible(doc, true);

 Lo.wait(1000);

 Draw.gotoPage(doc, currSlide);

 System.out.println("Viewing Slide number: " +

 Draw.getSlideNumber(Draw.getViewedPage(doc)));

 // first row

 XShape dShape = Draw.addDispatchShape(currSlide,

 "BasicShapes.diamond", 20, 60, 50, 30);

 Draw.addDispatchShape(currSlide,

 "HalfSphere", 80, 60, 50, 30); // 3D

 dShape = Draw.addDispatchShape(currSlide,

 "CalloutShapes.cloud-callout", 140, 60, 50, 30);

 Draw.setBitmapColor(dShape, "Sky");

 dShape = Draw.addDispatchShape(currSlide,

 "FlowChartShapes.flowchart-card", 200, 60, 50, 30);

 Draw.setHatchingColor(dShape, "Black -45 degrees");

 // second row

 dShape = Draw.addDispatchShape(currSlide,

 "StarShapes.star12", 20, 140, 40, 40);

 Draw.setGradientColor(dShape, "Radial red/yellow");

 Props.setProperty(dShape, "LineStyle", LineStyle.NONE);

 // no outline

 dShape = Draw.addDispatchShape(currSlide,

 "SymbolShapes.heart", 80, 140, 40, 40);

 Props.setProperty(dShape, "FillColor", 0xFF0000);

 Draw.addDispatchShape(currSlide,

 "ArrowShapes.left-right-arrow", 140, 140, 50, 30);

 // Block Arrow sub-menu

 dShape = Draw.addDispatchShape(currSlide,

 "Cyramid", 200, 120, 50, 50);

 // 3D pyramid, misspelt

 Draw.setBitmapColor(dShape, "Stone");

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 18 © Andrew Davison 2017

 Draw.showShapesInfo(currSlide);

} // end of dispatchShapes()

A title-only slide is created, followed by eight calls to Draw.addDispatchShape() to

create two rows of four shapes in Figure 9.

6.1. Viewing the Fifth Slide

Draw.addDispatchShape() requires the fifth slide to be the active, visible window on-

screen. This necessitates a call to GUI.setVisible() to make the document visible, but

that isn't quite enough. Making the document visible causes the first slide to be

displayed, not the fifth one.

Impress offers many ways of viewing slides, which are implemented in the API as

view classes that inherit the Controller service. The inheritance structure is shown in

Figure 12.

Figure 12. Impress View Classes.

When a Draw or Impress document is being edited, the view is

DrawingDocumentDrawView, which supports a number of useful properties, such as

"ZoomType" and "VisibleArea". Its XDrawView interface is employed for getting

and setting the current page displayed in this view.

Draw.gotoPage() gets the XController interface for the document, and converts it to

XDrawView so the visible page can be set:

// in Draw

public static void gotoPage(XComponent doc, XDrawPage page)

{ XController ctrl = GUI.getCurrentController(doc);

 gotoPage(ctrl, page);

} // end of jumpToPage()

public static void gotoPage(XController ctrl, XDrawPage page)

{

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 19 © Andrew Davison 2017

 XDrawView xDrawView = Lo.qi(XDrawView.class, ctrl);

 xDrawView.setCurrentPage(page);

} // end of gotoPage()

After the call to Draw.gotoPage(), the specified draw page will be visible on-screen,

and so receive any dispatch commands.

Draw.getViewedPage() returns a reference to the currently viewed page by calling

XDrawView.getCurrentPage():

// in Draw

public static XDrawPage getViewedPage(XComponent doc)

{

 XController ctrl = GUI.getCurrentController(doc);

 XDrawView xDrawView = Lo.qi(XDrawView.class, ctrl);

 return xDrawView.getCurrentPage();

} // end of getViewedPage()

6.2. Adding a Dispatch Shape to the Visible Page

If you try adding a smiley face to a slide inside Impress, it's a two-step process. It isn't

enough only to click on the icon, it's also necessary to drag the cursor over the page in

order for the shape to appear and be resized.

These steps are necessary for all the Drawing toolbar and 3D-Objects shapes, and are

emulated by my code. The programming equivalent of clicking on the icon is done by

calling Lo.dispatchCmd(), while implementing a mouse drag utilizes JNA and Java's

Robot class.

Draw.addDispatchShape() uses createDispatchShape() to create the shape, and then

positions and resizes it:

// in Draw

public static XShape addDispatchShape(XDrawPage slide,

 String shapeDispatch,

 int x, int y, int width, int height)

{

 warnsPosition(slide, x, y);

 XShape shape = createDispatchShape(slide, shapeDispatch);

 if (shape != null) {

 setPosition(shape, x, y);

 setSize(shape, width, height);

 }

 return shape;

} // end of addDispatchShape()

Draw.createDispatchShape() implements icon selection and click-and-drag:

// in Draw

public static XShape createDispatchShape(XDrawPage slide,

 String shapeDispatch)

{ int numShapes = slide.getCount();

 Lo.dispatchCmd(shapeDispatch);

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 20 © Andrew Davison 2017

 // select the shape icon; Office must be visible

 Lo.wait(1000);

 // click and drag on the page to create the shape on the page;

 // the current page must be visible

 java.awt.Point p1 =

 JNAUtils.getClickPoint(JNAUtils.getHandle());

 java.awt.Point p2 = JNAUtils.getOffsetPoint(p1, 100, 100);

 // hardwired offset

 JNAUtils.doDrag(p1, p2); // drag the cursor between p1 and p2

 Lo.wait(2000);

 /* get a reference to the shape by assuming it's

 the top one on the page */

 int numShapes2 = slide.getCount();

 if (numShapes2 == numShapes+1) { // there's a new shape

 System.out.println("Shape \"" + shapeDispatch + "\" created");

 return Draw.findTopShape(slide);

 }

 else { // no new shape

 System.out.println("Shape \"" + shapeDispatch +

 "\" not created");

 return null;

 }

} // end of createDispatchShape()

The click-and-drag operation doesn't return a reference to the shape, so

createDispatchShape() ends by calling Draw.findTopShape(). It returns a reference to

the top-most shape on the page, which I'm assuming is the new shape.

6.3. Using JNA to Click and Drag

JNAUtils.getHandle() returns Window's handle for Office, and getClickPoint()

calculates the center of the Office window:

// in JNAUtils

public static Point getClickPoint(HWND handle)

{

 Rectangle bounds = getBounds(handle);

 if (bounds == null) {

 System.out.println("Bounding rectangle is null");

 return null;

 }

 int xCenter = bounds.x + bounds.width/2;

 int yCenter = bounds.y + bounds.height/2;

 return new Point(xCenter, yCenter);

} // end of getClickPoint()

I'm hoping that this point is somewhere on the slide.

JNAUtils.getOffsetPoint() creates a second point offset some distance from the first:

public static Point getOffsetPoint(Point p1, int xDist, int yDist)

{ return new Point(p1.x + xDist, p1.y + yDist); }

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 21 © Andrew Davison 2017

Again, I'm hoping this point is on the slide.

JNAUtils.doDrag() employs Java's Robot class to send mouse actions to the active

window. doDrag() moves the cursor to the first point, then sends press and move

events to simulate a cursor drag to the second point. It finishes by sending a release

event for the mouse button:

// in JNAUtils

public static void doDrag(final Point clickPt,

 final Point releasePt)

// drag the cursor between the two points

{ if (clickPt == null) {

 System.out.println("Click point is null");

 return;

 }

 if (releasePt == null) {

 System.out.println("Release point is null");

 return;

 }

 EventQueue.invokeLater(new Runnable() {

 public void run() {

 try {

 Point oldPos = MouseInfo.getPointerInfo().getLocation();

 Robot r = new Robot();

 r.mouseMove(clickPt.x, clickPt.y);

 Lo.delay(300);

 r.mousePress(InputEvent.BUTTON1_MASK);

 Lo.delay(300);

 r.mouseMove(releasePt.x, releasePt.y);

 Lo.delay(300);

 r.mouseRelease(InputEvent.BUTTON1_MASK);

 r.mouseMove(oldPos.x, oldPos.y);

 }

 catch(AWTException e)

 { System.out.println("Unable to carry out Drag: " + e); }

 }

 });

} // end of doDrag()

The Robot events must be added to Java's event queue, so are wrapped up in a call to

EventQueue.invokeLater(). The final call to Robot.mouseMove() moves the cursor

back to its original position.

6.4. Things that Can Go Wrong

createDispatchShape() assumes that the slide being edited by Office is the visible,

active window. If these conditions aren't met then the dispatch and the dragging will

go to the wrong window. Unfortunately, calling GUI.setVisible() and

Draw.gotoPage() do not guarantee these conditions, since after their call the OS or the

user may inadvertently change the desktop's focus. A different window could become

active, and so receive those commands.

There are also timing issues: the call to Lo.dispatchCmd() returns immediately, but

the processing of the dispatch by Office may take hundreds of milliseconds. This is

Java LibreOffice Programming. Chapter 16. Making Slides Draft #2 (20th March 2017)

 22 © Andrew Davison 2017

why calls to Lo.delay() are scattered through the code, to give the dispatches time to

be processed.

There's also a timing problem with EventQueue.invokeLater() which returns

immediately after queuing up the Robot actions. The processing of its events may also

take many hundreds of milliseconds, so createDispatchShape() must call Lo.delay()

after returning from JNAUtils.doDrag().

Yet another problem is my assumption that the press and drag points are on the slide,

and not some other part of the application window, such as the toolbar.

6.5. 3D Shapes Might be Different (but aren't)

3D shapes are available both through the 3D-Objects toolbar (see Figure 11), and as

undocumented Shape APIs. The classes don't match up exactly with the eight shapes

in the toolbar, but are similar.The classes are Shape3DCubeObject,

Shape3DSphereObject, , Shape3DPolygonObject, Shape3DLatheObject,

Shape3DExtrudeObject, and Shape3DSceneObject, which all belong to the

com.sun.star.drawing package.

It should be possible to build a 3D cube by calling:

XShape shape3D = Draw.addShape(currSlide,

 "Shape3DCubeObject", 120, 120, 60, 60);

I tried this, and it nearly worked. The resulting slide contains a Shape3DCubeObject

object, which I deduced by listing all the shapes on the current slide with

Draw.showShapesInfo(). Unfortunately, the shape is invisible because its width and

height are 0. No amount of fiddling with its properties could change these zero

dimensions.

The conclusion of all this programming ugliness is that the API needs to be brought

up to date so it can access all the shapes available through the GUI.

